
Checklist for CS 211 Code Reviews

Structure

□ Does the code completely and correctly implement the design?

□ Is the code well-structured, consistent in style, and consistently formatted?

□ Are there any uncalled or unneeded procedures or any unreachable code?

□ Are there any leftover stubs, test routines, or debugging statements in the code?

□ Are there any blocks of repeated code that could be condensed into a single procedure?

□ Does the code use overly complicated logic or methods that could be simplified?

Documentation

□ Has the file been given a meaningful name, separate from the given base code file name?

□ Does the program begin with a comment giving the author, date, and purpose of the code?

□ Is the code clearly and adequately documented with an easy-to-maintain commenting style?

□ Are all comments consistent with the code?

Variables

□ Are all variables properly defined with meaningful, consistent, and clear names?

□ Are all variables properly typed for the information they are to hold?

□ Are all variables initialized or otherwise given a value before they are used.

□ Do all assigned variables have proper type consistency or casting?

□ Are there any redundant or unused variables?

Memory Management

□ Is all dynamically allocated memory freed before program exit?

□ Are all pointers initialized to NULL, and reset to NULL when no longer in use?

□ Are memory structures sized appropriately for their use?

Arithmetic Operations

□ Does the code avoid comparing floating-point numbers for exact equality?

□ Are divisors tested for zero?

□ Does the code avoid additions and subtractions on numbers with greatly different magnitudes?

Loops and Branches

□ Are all loops, branches, and logic constructs complete, correct, and properly nested?

□ Are all cases covered in an IF- -ELSEIF or CASE block, including ELSE or DEFAULT clauses?

□ Does every switch statement have a default?

□ Are loop termination conditions obvious and invariably achievable?

□ Are indexes or subscripts properly initialized, just prior to the loop?

□ Can any statements that are enclosed within loops be placed outside the loops?

□ Does the code in the loop avoid manipulating the index variable or using it upon exit from the loop?

Defensive Programming

□ Are indexes, pointers, and subscripts tested against array, record, or file bounds?

□ Are imported data and input arguments tested for validity and completeness?

□ Are all output variables assigned?

□ Are the correct data operated on in each statement?

